Исследование операций. Линейное, динамическое программирование


Исследование операций - часть 106


Поставим теперь вопрос: что будет происходить с вероятностями состояний при t

? Будут ли p1(t), p2(t),... стремиться к каким-то пределам? Если эти пределы существуют и не зависят от начального состояния системы, то они называются финальными вероятностями состояний. В теории случайных процессов доказывается, что если число п состояний системы конечно и из каждого из них можно (за конечное число шагов) перейти в любое другое, то финальные вероятности существуют').

Предположим, что это условие выполнено и финальные вероятности существуют:

 

.      (17.5)

 

Финальные вероятности мы будем обозначать теми же буквами р1, р2, ..., что и сами вероятности состояний, но разумея под ними уже не переменные величины (функции времени), а постоянные числа. Очевидно, они тоже образуют в сумме единицу:

 

        (17.6)

 

Как понимать эти финальные вероятности? При t

 в системе S

устанавливается предельный стационарный режим, в ходе которого система случайным образом меняет свои состояния, но их вероятности уже не зависят от времени. Финальную вероятность состояния S,

можно истолковать как среднее относительное время пребывания системы в этом состоянии. Например, если система S

имеет три состояния S1, S2, S3 и их финальные вероятности равны 0,2, 0,3 и 0,5, это значит, что в предельном, стационарном режиме система в среднем две десятых времени проводит в состоянии S1, три десятых — в состоянии S2 и половину времени — в состоянии S3.

 

1) Это условие достаточно, но не необходимо для существования финальных вероятностей.

 

Как же вычислить финальные вероятности? Очень просто. Если вероятности pi, pa,. •. постоянны, то их производные равны нулю. Значит, чтобы найти финальные вероятности, нужно все левые части в уравнениях Колмогорова положить равными нулю и решить полученную систему уже не дифференциальных, а линейных алгебраических уравнений. Можно и не писать уравнений Колмогорова, а прямо по графу состояний написать систему линейных алгебраических уравнений.


Начало  Назад  Вперед



Книжный магазин