Исследование операций. Линейное, динамическое программирование


Исследование операций - часть 128


При вычислении характеристик очереди можно пользоваться тем же приемом, какой мы применяли в задаче 2, с той разницей, что суммировать надо не бесконечную прогрессию, а конечную.

5. Замкнутая СМО с одним каналом и m источниками заявок. Для конкретности поставим задачу в следующей форме: один рабочий обслуживает т

станков, каждый из которых время от времени требует наладки (исправления). Интенсивность потока требований каждого работающего станка равна ?. Если станок вышел из строя в момент, когда рабочий свободен, он сразу же поступает на обслуживание. Если он вышел из строя в момент, когда рабочий занят, он становится в очередь и ждет, пока рабочий освободится. Среднее время наладки станка tоб = 1/?. Интенсивность потока заявок, поступающих к рабочему, зависит от того, сколько станков работает. Если работает k станков, она равна k?. Найти финальные вероятности состояний, среднее число работающих станков и вероятность того, что рабочий будет занят.

Заметим, что и в этой СМО финальные вероятности

будут существовать при любых значениях ? и ? = 1/tоб, так как число состояний системы конечно.

§ 21. Более сложные задачи теории массового обслуживания

В этом параграфе мы кратко рассмотрим некоторые вопросы, относящиеся к немарковским СМО. До сих пор все формулы нами выводились или, по крайней мере, могли быть выведены читателем, вооруженным схемой гибели и размножения, формулой Литтла и умением дифференцировать. То, что будет рассказано в данном параграфе, читателю придется принять на веру.

До сих пор мы занимались только простейшими СМО, для которых все потоки событий, переводящий их из состояния в состояние, были простейшими. А как быть, если они не простейшие? Насколько реально это допущение? Насколько значительны ошибки, к которым оно приводит, когда оно нарушается? На все эти вопросы мы попытаемся ответить здесь.

Как это ни грустно, но надо признаться, что в области немарковской теории массового обслуживания похвастать нам особенно нечем. Для немарковских СМО существуют только отдельные, считанные результаты, позволяющие выразить в явном, аналитическом виде характеристики СМО через заданные условия задачи — число каналов, характер потока заявок, вид распределения времени обслуживания.


Начало  Назад  Вперед



Книжный магазин