Исследование операций. Линейное, динамическое программирование


Исследование операций - часть 130


Время обслуживания Тоб также имеет произвольное распределение со средним значением tоб = 1/? и коэффициентом вариации v?, тоже заключенным между нулем и единицей. Для этого случая точных аналитических формул получить не удается;

можно только приближенно оценить среднюю длину очереди, ограничить ее сверху и снизу.

Доказано, что в этом случае

 

       (21.5)

 

Если входящий поток — простейший, то обе оценки — верхняя и нижняя — совпадают, и получается формула Полячека — Хинчина (21.1). Для грубо приближенной оценки средней длины очереди М. А. Файнбергом (см. [18]) получена очень простая формула:

 

            (21.6)

 

Среднее число заявок в системе получается из Lоч простым прибавлением ? — среднего числа обслуживаемых заявок:

 

Lсист = Lоч + ?.                  (21.7)

Что касается средних времен пребывания заявки в очереди и в системе, то они вычисляются через Lоч и Lсист по формуле Литтла делением на ?.

Таким образом, характеристики одноканальных СМО с неограниченной очередью могут быть (если не точно, то приближенно) найдены и в случаях, когда потоки заявок и обслуживании не являются простейшими.

Возникает естественный вопрос: а как же обстоит дело с многоканальными немарковскими СМО? Со всей откровенностью ответим: плохо. Точных аналитических методов для таких систем не существует. Единственное, что мы всегда можем найти, это среднее число занятых каналов k = ?. Что касается Lоч, Lсист, Wоч, Wсист, то для них таких общих формул написать не удается.

Правда, если каналов действительно много (4—5 или больше), то непоказательное время обслуживания не страшно: был бы входной поток простейшим. Действительно, общий поток «освобождений» каналов складывается из потоков освобождений отдельных каналов, а в результате такого наложения («суперпозиции») получается, как мы знаем, поток, близкий к простейшему. Так что в этом случае замена непоказательного распределения времени обслуживания показательным приводит к сравнительно малым ошибкам.


Начало  Назад  Вперед



Книжный магазин