Исследование операций. Линейное, динамическое программирование


Исследование операций - часть 131


К счастью, входной поток заявок во многих задачах практики близок к простейшему.

Хуже обстоит дело, когда входной поток заведомо не простейший. Ну, в этом случае приходится пускаться на хитрости. Например, подобрать две одноканальные СМО, из которых одна по своей эффективности заведомо «лучше» данной многоканальной, а другая — заведомо «хуже» (очередь больше, время ожидания больше). А для одноканальной СМО мы худо-бедно уже умеем находить характеристики в любом случае.

Как же подобрать такие одноканальные СМО — «лучшую» и «худшую»? Это можно сделать по-разному. Оказывается, заведомо худший вариант можно получить, если расчленить данную n-канальную СМО на п

одноканальных, а общий поступающий на них простейший поток распределять между этими одноканальными СМО в порядке очереди: первую заявку — в первую СМО, вторую — во вторую и т. д. Мы знаем, что при этом на каждую СМО будет поступать поток Эрланга n-го порядка, с коэффициентом вариации, равным 1/

. Что касается коэффициента вариации времени обслуживания, то он остается прежним. Для такой одноканальной СМО мы уже умеем вычислять время пребывания заявки в системе Wсист; оно будет заведомо больше, чем для исходной n-канальной СМО. Зная это время, можно дать «пессимистическую» оценку и для среднего числа заявок в очереди, пользуясь формулой Литтла и умножая среднее время на интенсивность ? общего потока заявок. «Оптимистическую» оценку можно получить, заменяя n-канальную СМО одной одноканальной, но с интенсивностью потока обслуживании в n раз большей, чем у данной, равной n?. Естественно, при этом параметр ? тоже должен быть, изменен, уменьшен в n раз. Для такой СМО время пребывания заявки в системе Wсист уменьшается за счет того, что обслуживание продолжается в n раз меньше времени. Пользуясь измененным значением
, коэффициентом вариации входящего потока v? и времени обслуживания v?, мы можем приближенно вычислить среднее число заявок в системе
. Вычитая из него первоначальное (не измененное) значение ?, мы получим среднее число заявок в очереди
.


Начало  Назад  Вперед



Книжный магазин