Исследование операций. Линейное, динамическое программирование


Исследование операций - часть 133


Что она может нам дать? Сама по себе — почти ни чего, так же как, скажем, один случай излечения больного с помощью какого-то лекарства (или несмотря на лекарство). Другое дело, если таких реализации получено много. Это множество реализации можно использовать как некий искусственно полученный статистический материал, который может быть обработан обычными методами математической статистики. После такой обработки могут быть получены (разумеется, приближенно) любые интересующие нас характеристики: вероятности событий, математические ожидания и дисперсии случайных величин и, т. д. При моделировании случайных явлений методом Монте-Карло мы пользуемся самой случайностью как аппаратом исследования, заставляем ее «работать на нас».

Нередко такой прием оказывается проще, чем попытки построить аналитическую модель. Для сложных операций, в которых участвует большое число элементов (машин, людей, организаций, подсобных средств), в которых случайные факторы сложно переплетены, где процесс — явно немарковский, метод статистического моделирования, как правило, оказывается проще аналитического (а нередко бывает и единственно возможным).

В сущности, методом Монте-Карло может быть решена любая вероятностная задача, но оправданным он становится только тогда, когда процедура розыгрыша проще, а не сложнее аналитического расчета. Приведем пример, когда метод Монте-Карло возможен, но крайне неразумен. Пусть, например, по какой-то цели производится три независимых выстрела, из которых каждый попадает в цель с вероятностью 1/2. Требуется найти вероятность хотя бы одного попадания. Элементарный расчет дает нам вероятность хотя бы одного попадания равной 1 - (1/2)3 = 7/8. Ту же задачу, в принципе, можно решить и «розыгрышем», статистическим моделированием. Вместо «трех выстрелов» будем бросать «три монеты», считая, скажем, герб — за «попадание», решку — за «промах». Опыт считается «удачным», если хотя бы на одной из монет выпадет герб. Произведем очень-очень много опытов, подсчитаем общее количество «удач» и разделим на число N




Начало  Назад  Вперед



Книжный магазин