Исследование операций. Линейное, динамическое программирование


Исследование операций - часть 139


Возникает вопрос: а как же разыгрывается это число R? Существует целый ряд разновидностей так называемых «датчиков случайных чисел», решающих эту задачу. Остановимся вкратце на некоторых из них.

Самый простой из датчиков случайных чисел — это вращающийся барабан, в котором перемешиваются перенумерованные шарики (или жетоны). Пусть, например, нам надо разыграть случайное число R от 0 до 1 с точностью до 0,001. Заложим в барабан 1000 перенумерованных шариков, приведем его во вращение и после остановки выберем первый попавшийся шарик, прочтем его номер и разделим на 1000.

Можно поступить и немного иначе: вместо 1000 шариков заложить в барабан только 10, с цифрами 0, 1,2,..., 9. Вынув один шарик, прочтем первый десятичный знак дроби. Вернем его обратно, снова покрутим барабан и возьмем второй шарик — это будет второй десятичный знак и т. д. Легко доказать (мы этого делать не будем), что полученная таким образом десятичная дробь будет иметь равномерное распределение от 0 до 1. Преимущество этого способа в том, что он никак не связан с числом знаков, с которым мы хотим знать R.

Отсюда один шаг до рационализаторского предложения: не разыгрывать число R каждый раз, когда это понадобится, а сделать это заранее, т. е. составить достаточно обширную таблицу, в которой все цифры 0, 1, 2, .... 9 встречаются случайным образом и с

одинаковой вероятностью (частотой). До этого приема люди давно додумались: такие таблицы действительно составлены и применяются на практике. Они называются таблицами случайных чисел. Выдержки из таблиц случайных чисел приводятся во многих руководствах по теории вероятностей и математической статистике (например, [201]). Краткие выдержки из таблиц случайных чисел приведены и в популярной книжке автора [21], где, кстати, даны и примеры моделирования случайных процессов с помощью таблиц случайных чисел.

При ручном применении метода Монте-Карло таблицы случайных чисел — наилучший способ розыгрыша случайного числа R от 0 до 1. Если же моделирование осуществляется не вручную, а на ЭВМ, то пользование таблицами случайных чисел (как и вообще таблицами) нерационально — они слишком загрузили бы память.


Начало  Назад  Вперед



Книжный магазин