Исследование операций. Линейное, динамическое программирование


Исследование операций - часть 143


Среднее число заявок в очереди Lоч получим, вычитая из Lсист среднее число заявок под обслуживанием (для одноканальной СМО это вероятность того, что канал занят):

Рзан = 1 - (p00 + p10).

 

Среднее время пребывания заявки в системе и в очереди получим по формуле Литтла:

 

 

На этом мы, заканчиваем краткое наложение метода Монте-Карло, отсылая интересующегося читателя к руководствам [6, 22], где он изложен более полно и где, в частности, рассматривается вопрос о точности статистического моделирования.

 

ГЛАВА 8

ИГРОВЫЕ МЕТОДЫ ОБОСНОВАНИЯ РЕШЕНИЙ

§ 25. Предмет и задачи теории игр

В предыдущих трех главах мы рассматривали вопросы, связанные с математическим моделированием (а иногда и оптимизацией решений), в случаях, когда условия операции содержат неопределенность, но относительно «доброкачественную», стохастическую, которая в принципе может быть учтена, если знать законы распределения (на худой конец — числовые характеристики) фигурирующих в задаче случайных факторов.

Такая неопределенность—еще «полбеды». В этой главе мы рассмотрим (по необходимости бегло) гораздо худший вид неопределенности (в § 5 мы назвали ее «дурной»), когда некоторые параметры, от которых зависит успех операции, неизвестны, и нет никаких данных, позволяющих судить о том, какие их значения более, а какие — менее вероятны. Неопределенными (в «дурном» смысле) могут быть как внешние, «объективные» условия операции, как и «субъективные» — сознательные действия противников, соперников или других лиц. Как известно, «чужая душа — потемки», и предсказывать, как себя поведут эти лица, еще труднее, чем предсказывать в области случайных явлений.

Разумеется, когда речь идет о неопределенной (в «дурном» смысле) ситуации, выводы, вытекающие из научного исследования, не могут быть ни точными, ни однозначными. Но и в этом случае количественный анализ может принести пользу при выборе решения.

Такого рода задачами занимается специальный раздел математики, носящий причудливое название «теория игр и статистических решений».


Начало  Назад  Вперед



Книжный магазин