Исследование операций. Линейное, динамическое программирование


Исследование операций - часть 153


Другое дело, если можно скоп стратегии «смешивать», чередовать случайным образом с какими-то вероятностями. Применение смешанных стратегий мыслится таким образом: игра повторяется много раз; перед каждой партией игры, когда игроку предоставляется личный ход, он «передоверяет» свой выбор случайности, «бросает жребий», и берет ту стратегию, которая выпала (как организовать жребий, мы уже знаем из предыдущей главы).

Смешанные стратегии в теории игр представляют собой модель изменчивой, гибкой тактики, когда ни один из игроков не знает, как поведет себя противник в данной партии. Такая тактика (правда, обычно безо всяких математических обоснований) часто применяется в карточных играх. Заметим при этом, что лучший способ скрыть от противника свое поведение — это придать ему случайный характер и, значит, самому не знать заранее, как ты поступишь.

Итак, поговорим о смешанных стратегиях. Будем обозначать смешанные стратегии игроков А и В

соответственно SA =•(p1, р2,

..., pm), SB = (q1, q2, …, qn), где p1, p2, …, pm (образующие в сумме единицу) — вероятности применения игроком А стратегий А1, A2,…, Am; q1, q2, …, qn —вероятности применения игроком В стратегий В1, В2, ..., Вn. В частном случае, когда все вероятности, кроме одной, равны нулю, а эта одна — единице, смешанная стратегия превращается в чистую.

Существует основная теорема теории игр: любая конечная игра двух лиц с нулевой суммой имеет, по крайней мере, одно решение — пару оптимальных стратегий, в общем случае смешанных

 и соответствующую цену v.

Пара оптимальных стратегий

 образующих решение игры, обладает следующим свойством: если один из игроков придерживается своей оптимальной стратегии, то другому не может быть выгодно, отступать от своей. Эта пара стратегий образует в игре некое положение равновесия: один игрок хочет обратить выигрыш в максимум, другой — в минимум, каждый тянет в свою сторону и, при разумном поведении обоих, устанавливается равновесие и устойчивый выигрыш v. Если v >

0, то игра выгодна для нас, если v<0 для противника; при v = 0 игра «справедливая», одинаково выгодная для обоих участников.




Начало  Назад  Вперед



Книжный магазин