Исследование операций. Линейное, динамическое программирование



Исследование операций - часть 36


Но на стоянке может не быть машин, а, добираясь до работы со станции метро пешком, он рискует опоздать больше, чем, если бы ехал автобусом. Как ему поступить?

Перед нами типичная (намеренно упрощенная) задача исследования операций с двумя критериями (показателями). Первый — среднее ожидаемое  время опоздания Т,

которое хотелось бы сделать минимальным. Второй — ожидаемая стоимость проезда S; ее тоже желательно сделать минимальной. Но эти два требования, как мы знаем, несовместимы, поэтому человек должен принять компромиссное, приемлемое по обоим критериям, решение. Возможно, он при этом подсознательно взвешивает все «за» и «против», пользуясь чем-то вроде обобщенного показателя:

W = a1 T + a2 S => min.             (6.2)

Но беда в том, что весовые коэффициенты а1, а2 никак нельзя считать постоянными. Они зависят как от самих величин Т

и S, так и от обстановки. Например, если человек недавно уже получил выговор за опоздание, коэффициент при Т у него, вероятно, увеличится, а на другой день после получки, вероятно, уменьшится коэффициент при S.

Если же назначать (как это обычно и делается) веса а1, а2

произвольно, то, по существу, столь же произвольным будет и вытекающее из них «оптимальное» решение.

Здесь мы встречаемся с очень типичным для подобных ситуаций приемом — «переносом произвола из одной инстанции в другую». Простой выбор компромиссного решения на основе мысленного сопоставления всех «за» и «против» каждого решения кажется слишком произвольным, недостаточно «научным». А вот маневрирование с формулой, включающей (пусть столь же произвольно назначенные) коэффициенты а1, а2, ...,—совсем другое дело. Это уже «наука»! По существу же никакой науки тут нет, и нечего обманывать самих себя.

«Гони природу в дверь — она влетит в окно». Нечего надеяться полностью, избавиться от субъективности в задачах, связанных с выбором решений. Даже в простейших, однокритериальных задачах она неизбежно присутствует, проявляясь хотя бы в выборе показателя эффективности и математической модели явления.


Содержание  Назад  Вперед