Исследование операций. Линейное, динамическое программирование



         

Исследование операций - часть 82


,

и т. д. до конца.

А теперь решим численный пример. Исходный запас средств К = 10 (условных единиц), и требуется его оптимальным образом распределить между пятью предприятиями (т =

5). Для простоты предположим, что вкладываются только целые количества средств. Функции дохода

(х) заданы в таблице 13.1.

Таблица 13.1

х

1

2

3

4

5

6

7

8

0,5

1,0

1,4

2,0

2,5

2,8

3,0

3,0

0,1

0,5

1,2

1,8

2,5

2,9

3,5

3,5

0,6

1,1

1,2

1,4

1,6

1,7

1,8

1,8

0,3

0,6

1,3

1,4

1,5

1,5

1,5

1,5

1,0

1,2

1,3

1,3

1,3

1,3

1,3

1,3

В каждом столбце, начиная с какой-то суммы вложений, доходы перестают возрастать (реально это соответствует тому, что каждое предприятие способно «освоить» лишь ограниченное количество средств).

Произведем условную оптимизацию так, как это было описано выше, начиная с последнего, 5-го шага. Каждый раз, когда мы подходим к очередному шагу, имея запас средств S, мы пробуем выделить па этот шаг то или другое количество средств, берем выигрыш па данном шаге по таблице 13.1, складываем с уже оптимизированным выигрышем на всех последующих шагах до конца (учитывая, что средств у нас осталось уже меньше, как раз на такое количество средств, которое мы выделили) и находим то вложение, на котором эта сумма достигает максимума. Это вложение и есть условное оптимальное управление на данном шаге, а сам максимум — условный оптимальный выигрыш.

В таблице 13.2 даны результаты условной оптимизации по всем шагам. Таблица построена так: в первом столбце даются значения запаса средств S, с которым мы подходим к данному шагу. Далее таблица разделена на пять пар столбцов, соответственно номеру шага. В первом столбце каждой пары приводится значение

Таблица 13.2

S

i=5

i=4

i=3

i=2

i=1

x5(S)

W5(S)

x4(S)

W4(S)

x3(S)

W3(S)

x2(S)

W2(S)

x1(S)

W1(S)

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1,0

1,2

1,3

1,3

1,3

1,3

1,3

1,3

1,3

1,3

0

1

2

3

3

4

5

5

6

7

1,0

1,3

1,6

2,3

2,5

2,6

2,7

2,8

2,8

2,8

0

1

2

2

1

2

2

4

5

5

1,0

1,6

2,1

2,4

2,9

3,4

3,6

3,7

3,9

4,1

0

0

0

0

0

5

5

5

7

7

1,0

1,6

2,1

2,4

2,9

3,5

4,1

4,6

5,1

5,6

2

5,6

<


Содержание  Назад  Вперед